
fMRIprep Documentation
Release version

Craig A. Moodie, Krzysztof J. Gorgolewski, Oscar Esteban, Ross Blair, Shoshana Berleant

Mar 21, 2017





Contents

1 About 3

2 Principles 5

3 Acknowledgements 7

4 License information 9

5 Authors 11

6 Contents 13
6.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.2 What’s new . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.3 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.4 Workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.5 Contributing to FMRIPREP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

i



ii



fMRIprep Documentation, Release version

This pipeline is developed by the Poldrack lab at Stanford University for use at the Center for Reproducible Neuro-
science (CRN), as well as for open-source software distribution.

Contents 1

https://poldracklab.stanford.edu/
http://reproducibility.stanford.edu/
http://reproducibility.stanford.edu/


fMRIprep Documentation, Release version

2 Contents



CHAPTER 1

About

fmriprep is a functional magnetic resonance imaging (fMRI) data preprocessing pipeline that is designed to pro-
vide an easily accessible, state-of-the-art interface that is robust to differences in scan acquisition protocols and that
requires minimal user input, while providing easily interpretable and comprehensive error and output reporting. It
performs basic processing steps (coregistration, normalization, unwarping, noise component extraction, segmentation,
skullstripping etc.) providing outputs that make running a variety of group level analyses (task based or resting state
fMRI, graph theory measures, surface or volume, etc.) easy.

Note: fmriprep performs minimal preprocessing. Here we define ‘minimal preprocessing’ as motion correction, field
unwarping, normalization, field bias correction, and brain extraction. See the workflows for more details.

The fmriprep pipeline primarily utilizes FSL tools, but also utilizes ANTs tools at several stages such as skull stripping
and template registration. This pipeline was designed to provide the best software implementation for each state of
preprocessing, and will be updated as newer and better neuroimaging software become available.

This tool allows you to easily do the following:

• Take fMRI data from raw to full preprocessed form.

• Implement tools from different software packages.

• Achieve optimal data processing quality by using the best tools available.

• Generate preprocessing quality reports, with which the user can easily identify outliers.

• Receive verbose output concerning the stage of preprocessing for each subject, including meaningful errors.

• Automate and parallelize processing steps, which provides a significant speed-up from typical linear, manual
processing.

More information and documentation can be found here:

https://fmriprep.readthedocs.io/

3

https://fmriprep.readthedocs.io/


fMRIprep Documentation, Release version

4 Chapter 1. About



CHAPTER 2

Principles

fmriprep is built around three principles:

1. Robustness - the pipeline adapts the preprocessing steps depending on the input dataset and should provide
results as good as possible independently of scanner make, scanning parameters or presence of additional cor-
rection scans (such as fieldmaps)

2. Ease of use - thanks to dependance on the BIDS standard manual parameter input is reduced to a minimum
allow the pipeline to run in an automatic fashion.

3. “Glass box” philosophy - automation should not mean that one should not visually inspect the results or un-
derstand the methods. Thus fmriprep provides for each subject visual reports detailing the accuracy of the
most importatnt processing steps. This combined with the documentation can help researchers to understand the
process and decide which subjects should be kept for the group level analysis.

5



fMRIprep Documentation, Release version

6 Chapter 2. Principles



CHAPTER 3

Acknowledgements

Please acknowledge this work mentioning explicitly the name of this software (fmriprep) and the version, along with
the link to the GitHub repository (https://github.com/poldracklab/fmriprep).

7

https://github.com/poldracklab/fmriprep


fMRIprep Documentation, Release version

8 Chapter 3. Acknowledgements



CHAPTER 4

License information

We use the 3-clause BSD license; the full license is in the file LICENSE in the fmriprep distribution.

All trademarks referenced herein are property of their respective holders.

Copyright (c) 2015-2017, the fmriprep developers and the CRN. All rights reserved.

9



fMRIprep Documentation, Release version

10 Chapter 4. License information



CHAPTER 5

Authors

This open-source neuroimaging data processing tool is being developed as a part of the MRI image analysis and
reproducibility platform offered by the CRN.

The CRN (Center for Reproducible Neuroscience) developers team:

• Chris F. Gorgolewski

• Craig Moodie

• Ross Blair

• Shoshana Berleant

• Oscar Esteban

• Christopher J. Markiewicz

• Russell A. Poldrack

Poldrack Lab, Psychology Department, Stanford University.

11



fMRIprep Documentation, Release version

12 Chapter 5. Authors



CHAPTER 6

Contents

Installation

There are three ways to use fmriprep: in a Docker Container, in a Singularity Container, or in a Manually Prepared
Environment. Using a container method is highly recommended. Once you are ready to run fmriprep, see Usage for
details.

Docker Container

Make sure command-line Docker is installed.

See External Dependencies for more information (e.g., specific versions) on what is included in the fmriprep Docker
image.

Now, assuming you have data, you can run fmriprep. You will need an active internet connection the first time.

$ docker run -ti --rm \
-v filepath/to/data/dir:/data:ro \
-v filepath/to/output/dir:/out \
poldracklab/fmriprep:latest \
/data /out/out \
participant

For example:

$ docker run -ti --rm \
-v $HOME/fullds005:/data:ro \
-v $HOME/dockerout:/out \
poldracklab/fmriprep:latest \
/data /out/out \
participant \
--ignore fieldmaps

13

https://docs.docker.com/engine/installation/


fMRIprep Documentation, Release version

Singularity Container

For security reasons, many HPCs (e.g., TACC) do not allow Docker containers, but do allow Singularity containers. In
this case, start with a machine (e.g., your personal computer) with Docker installed. Use docker2singularity to create
a singularity image. You will need an active internet connection and some time.

$ docker run --privileged -t --rm \
-v /var/run/docker.sock:/var/run/docker.sock \
-v D:\host\path\where\to\output\singularity\image:/output \
singularityware/docker2singularity \
poldracklab/fmriprep:latest

Transfer the resulting Singularity image to the HPC, for example, using scp.

$ scp poldracklab_fmriprep_latest-*.img user@hcpserver.edu:/path/to/downloads

If the data to be preprocessed is also on the HPC, you are ready to run fmriprep.

$ singularity run path/to/singularity/image.img \
path/to/data/dir path/to/output/dir \
participant \
--participant_label label

For example:

$ singularity run ~/poldracklab_fmriprep_latest-2016-12-04-5b74ad9a4c4d.img \
/work/04168/asdf/lonestar/ $WORK/lonestar/output \
participant \
--participant_label sub-387 --nthreads 16 -w $WORK/lonestar/work \
--ants-nthreads 16

Manually Prepared Environment

Note: This method is not recommended! Make sure you would rather do this than use a Docker Container or a
Singularity Container.

Make sure all of fmriprep’s External Dependencies are installed. These tools must be installed and their binaries
available in the system’s $PATH.

If you have pip installed, install fmriprep

$ pip install fmriprep

If you have your data on hand, you are ready to run fmriprep:

$ fmriprep data/dir output/dir participant --participant_label label

External Dependencies

fmriprep is implemented using nipype, but it requires some other neuroimaging software tools:

• FSL (version 5.0.9)

• ANTs (version 2.1.0.Debian-Ubuntu_X64)

14 Chapter 6. Contents

https://github.com/singularityware/singularity
https://github.com/singularityware/docker2singularity
http://nipype.readthedocs.io/en/latest/
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
http://stnava.github.io/ANTs/


fMRIprep Documentation, Release version

• AFNI (version Debian-16.2.07)

• C3D (version 1.0.0)

What’s new

0.3.0 (20th of March 2017)

• [FIX] Affine and warp MNI transforms are now applied in the correct order

• [ENH] Added preliminary support for reconstruction of cortical surfaces using FreeSurfer

• [ENH] Switched to bbregister for BOLD to T1 coregistration

• [ENH] Switched to sinc interpolation of preprocessed BOLD and T1w outputs

• [ENH] Preprocessed BOLD volumes are now saved in the T1w space instead of mean BOLD

• [FIX] Fixed a bug with MCFLIRT interpolation inducing slow drift

• [ENH] All files are now saved in Float32 instead of Float64 to save space

0.2.0 (13th of January 2017)

• Initial public release

0.1.2 (3rd of October 2016)

• [FIX] Downloads from OSF, remove data downloader (now in niworkflows)

• [FIX] pybids was missing in the install_requires

• [DEP] Deprecated -S/–subject-id tag

• [ENH] Accept subjects with several T1w images (#114)

• [ENH] Documentation updates (#130, #131)

• [TST] Re-enabled CircleCI tests on one subject from ds054 of OpenfMRI

• [ENH] Add C3D to docker image, updated poldracklab hub (#128, #119)

• [ENH] CLI is now BIDS-Apps compliant (#123)

0.1.1 (30th of July 2016)

• [ENH] Grabbit integration (#113)

• [ENH] More outputs in MNI space (#99)

• [ENH] Implementation of phase-difference fieldmap estimation (#91)

• [ENH] Fixed bug using non-RAS EPI

• [ENH] Works on ds005 (datasets without fieldmap nor sbref)

• [ENH] Outputs start to follow BIDS-derivatives (WIP)

6.2. What’s new 15

https://afni.nimh.nih.gov/
https://sourceforge.net/projects/c3d/


fMRIprep Documentation, Release version

0.0.1

• [ENH] Added Docker images

• [DOC] Added base code for automatic publication to RTD.

• Set up CircleCI with a first smoke test on one subject.

• BIDS tree scrubbing and subject-session-run selection.

• Refactored big workflow into consistent pieces.

• Migrated Craig’s original code

Usage

Execution and the BIDS format

The fmriprep workflow takes as principal input the path of the dataset that is to be processed. The only requirement
to the input dataset is that it has a valid BIDS (Brain Imaging Data Structure) format. This can be easily checked
online using the BIDS Validator.

The exact command to run fmriprep depends on the Installation method. The common parts of the command follow
the BIDS-Apps definition. Example:

fmriprep data/bids_root/ out/ participant -w work/

Command-Line Arguments

usage: run_workflow.py [-h]
[--participant_label PARTICIPANT_LABEL [PARTICIPANT_LABEL ...]]
[-v] [-s SESSION_ID] [-r RUN_ID] [--task-id TASK_ID]
[-d {anat,func}] [--debug] [--nthreads NTHREADS]
[--mem_mb MEM_MB] [--write-graph]
[--use-plugin USE_PLUGIN] [-w WORK_DIR]
[--ignore {fieldmaps} [{fieldmaps} ...]]
[--reports-only] [--skip-native]
[--ants-nthreads ANTS_NTHREADS] [--skull-strip-ants]
[--no-skull-strip-ants] [--no-freesurfer]
bids_dir output_dir {participant}

fMRI Preprocessing workflow

positional arguments:
bids_dir
output_dir
{participant}

optional arguments:
-h, --help show this help message and exit
--participant_label PARTICIPANT_LABEL [PARTICIPANT_LABEL ...]
-v, --version show program's version number and exit

fMRIprep specific arguments:
-s SESSION_ID, --session-id SESSION_ID
-r RUN_ID, --run-id RUN_ID

16 Chapter 6. Contents

http://bids.neuroimaging.io
http://incf.github.io/bids-validator/
https://github.com/BIDS-Apps


fMRIprep Documentation, Release version

--task-id TASK_ID limit the analysis only ot one task
-d {anat,func}, --data-type {anat,func}
--debug run debug version of workflow
--nthreads NTHREADS number of threads
--mem_mb MEM_MB try to limit the total amount of requested memory for all

→˓workflows to this number
--write-graph Write workflow graph.
--use-plugin USE_PLUGIN

nipype plugin configuration file
-w WORK_DIR, --work-dir WORK_DIR
--ignore {fieldmaps} [{fieldmaps} ...]

In case the dataset includes fieldmaps but you chose not to
→˓take advantage of them.
--reports-only only generate reports, don't run workflows. This will only

→˓rerun report aggregation, not reportlet generation for specific nodes.
--skip-native don't output timeseries in native space

specific settings for ANTs registrations:
--ants-nthreads ANTS_NTHREADS

number of threads that will be set in ANTs processes
--skull-strip-ants use ANTs-based skull-stripping (default, slow))
--no-skull-strip-ants

don't use ANTs-based skull-stripping (use AFNI instead, fast)

settings for FreeSurfer preprocessing:
--no-freesurfer disable FreeSurfer preprocessing

Debugging

Logs and crashfiles are outputted into the <output dir>/logs directory. Information on how to customize and
understand these files can be found on the nipype debugging page.

Support and communication

The documentation of this project is found here: http://fmriprep.readthedocs.org/en/latest/.

If you have a problem or would like to ask a question about how to use fmriprep, please submit a question to
NeuroStars.org with an fmriprep tag. NeuroStars.org is a platform similar to StackOverflow but dedicated to
neuroinformatics.

All previous fmriprep questions are available here: http://neurostars.org/tags/fmriprep/

To participate in the fmriprep development-related discussions please use the following mailing list: http://mail.
python.org/mailman/listinfo/neuroimaging Please add [fmriprep] to the subject line when posting on the mailing list.

All bugs, concerns and enhancement requests for this software can be submitted here: https://github.com/poldracklab/
fmriprep/issues.

Workflows

Basic workflow (no fieldmaps)

fmriprep‘s basic pipeline is used on datasets for which there are only t1ws and at least one functional (EPI) file,

6.4. Workflows 17

http://nipype.readthedocs.io/en/latest/users/debug.html
http://fmriprep.readthedocs.org/en/latest/
http://neurostars.org
http://neurostars.org/tags/fmriprep/
http://mail.python.org/mailman/listinfo/neuroimaging
http://mail.python.org/mailman/listinfo/neuroimaging
https://github.com/poldracklab/fmriprep/issues
https://github.com/poldracklab/fmriprep/issues


fMRIprep Documentation, Release version

but no SBRefs or fieldmaps. To force using this pipeline on datasets that do include fieldmaps and SBRefs use the
--ignore fieldmaps flag.

Several steps are added or modified if Surface preprocessing is enabled.

What It Does

High-level view of the basic pipeline:

BIDSDatasource

This node reads the BIDS-formatted T1 data.

t1w_preprocessing

The t1w_preprocessing sub-workflow finds the skull stripping mask and the white matter/gray mat-
ter/cerebrospinal fluid segments and finds a non-linear warp to the MNI space.

18 Chapter 6. Contents

http://bids.neuroimaging.io


fMRIprep Documentation, Release version

Fig. 6.1: Brain extraction (ANTs).

Fig. 6.2: Segmentation (FAST).

If enabled, FreeSurfer surfaces are reconstructed from T1-weighted structural image(s), using the ANTs-extracted
brain mask. See Reconstruction for details.

EPI_HMC

The EPI_HMC sub-workflow collects BIDS-formatted EPI files, performs head motion correction, and skullstripping.
FSL MCFLIRT is used to estimate motion transformations and ANTs is used to apply them using Lanczos interpola-
tion. Nilearn is used to perform skullstripping of the mean EPI image.

Fig. 6.3: Animation showing T1 to MNI normalization (ANTs)

6.4. Workflows 19

http://bids.neuroimaging.io


fMRIprep Documentation, Release version

Fig. 6.4: Brain extraction (nilearn).

ref_epi_t1_registration

The ref_epi_t1_registration sub-workflow uses FSL FLIRT with the BBR cost function to find the transform that maps
the EPI space into the T1-space.

Fig. 6.5: Animation showing EPI to T1 registration (FSL FLIRT with BBR)

If surface processing is enabled, bbregister is used instead. See Boundary-based Registration (BBR) for details.

20 Chapter 6. Contents



fMRIprep Documentation, Release version

EPIMNITransformation

The EPIMNITransformation sub-workflow uses the transform from ‘EPIMeanNormalization‘_ and a T1-to-MNI
transform from t1w_preprocessing to map the EPI image to standardized MNI space. It also maps the t1w-based mask
to MNI space.

Transforms are concatenated and applied all at once, with one interpolation step, so as little information is lost as
possible.

ConfoundDiscoverer

Given a motion-corrected fMRI, a brain mask, MCFLIRT movement parameters and a segmentation, the Confound-
Discoverer sub-workflow calculates potential confounds per volume.

Calculated confounds include the mean global signal, mean tissue class signal, tCompCor, aCompCor, Framewise
Displacement, 6 motion parameters and DVARS.

Reports

fmriprep outputs summary reports, outputted to <output dir>/fmriprep/sub-<subject_label>.
html. These reports provide a quick way to make visual inspection of the results easy. Each report is self contained
and thus can be easily shared with collaborators (for example via email). View a sample report.

6.4. Workflows 21



fMRIprep Documentation, Release version

Derivatives

There are additional files, called “Derivatives”, outputted to <output dir>/fmriprep/
sub-<subject_label>/. See the BIDS spec for more information.

Derivatives related to t1w files are in the anat subfolder:

• *T1w_brainmask.nii.gz Brain mask derived using ANTS or AFNI, depending on the command flag
--skull-strip-ants

• *T1w_space-MNI152NLin2009cAsym_brainmask.nii.gz Same as above, but in MNI space.

• *T1w_dtissue.nii.gz Tissue class map derived using FAST.

• *T1w_preproc.nii.gz Bias field corrected t1w file, using ANTS’ N4BiasFieldCorrection

• *T1w_space-MNI152NLin2009cAsym_preproc.nii.gz Same as above, but in MNI space

• *T1w_space-MNI152NLin2009cAsym_class-CSF_probtissue.nii.gz

• *T1w_space-MNI152NLin2009cAsym_class-GM_probtissue.nii.gz

• *T1w_space-MNI152NLin2009cAsym_class-WM_probtissue.nii.gz Probability tissue maps,
transformed into MNI space

• *T1w_target-MNI152NLin2009cAsym_warp.h5 Composite (warp and affine) transform to transform
t1w into MNI space

Derivatives related to EPI files are in the func subfolder:

• *bold_space-T1w_brainmask.nii.gz Brain mask for EPI files, calculated by nilearn on the average
EPI volume, post-motion correction, in T1w space

• *bold_space-MNI152NLin2009cAsym_brainmask.nii.gz Same as above, but in MNI space

• *bold_confounds.tsv A tab-separated value file with one column per calculated confound and one row
per timepoint/volume

• *bold_space-T1w_preproc.nii.gz Motion-corrected (using MCFLIRT for estimation and ANTs for
interpolation) EPI file in T1w space

• *bold_space-MNI152NLin2009cAsym_preproc.nii.gz Same as above, but in MNI space

Surface preprocessing

fmriprep uses FreeSurfer to reconstruct surfaces from T1/T2-weighted structural images. If enabled, several
steps in the fmriprep pipeline are added or replaced. All surface preprocessing may be disabled with the
--no-freesurfer flag.

Reconstruction

If FreeSurfer reconstruction is performed, the reconstructed subject is placed in <output dir>/freesurfer/
sub-<subject_label>/ (see FreeSurfer Derivatives).

Surface reconstruction is performed in three phases. The first phase initializes the subject with T1- and T2-weighted (if
available) structural images and performs basic reconstruction (autorecon1) with the exception of skull-stripping.
For example, a subject with only one session with T1 and T2-weighted images would be processed by the following
command:

22 Chapter 6. Contents

http://bids.neuroimaging.io
https://surfer.nmr.mgh.harvard.edu/


fMRIprep Documentation, Release version

$ recon-all -sd <output dir>/freesurfer -subjid sub-<subject_label> \
-i <bids-root>/sub-<subject_label>/anat/sub-<subject_label>_T1w.nii.gz \
-T2 <bids-root>/sub-<subject_label>/anat/sub-<subject_label>_T2w.nii.gz \
-autorecon1 \
-noskullstrip

The second phase imports the brainmask calculated in the t1w_preprocessing sub-workflow. The final phase resumes
reconstruction, using the T2-weighted image to assist in finding the pial surface, if available:

$ recon-all -sd <output dir>/freesurfer -subjid sub-<subject_label> \
-all -T2pial

Reconstructed white and pial surfaces are included in the report.

Fig. 6.6: Surface reconstruction (FreeSurfer)

If T1-weighted voxel sizes are less 1mm in all dimensions (rounding to nearest .1mm), submillimeter reconstruction
is used.

In order to bypass reconstruction in fmriprep, place existing reconstructed subjects in <output dir>/
freesurfer prior to the run. fmriprep will perform any missing recon-all steps, but will not perform any
steps whose outputs already exist.

Boundary-based Registration (BBR)

The mean EPI image of each run is aligned to the reconstructed subject using the gray/white matter boundary
(FreeSurfer’s ?h.white surfaces).

If FreeSurfer processing is disabled, FLIRT is performed with the BBR cost function, using the FAST segmentation
to establish the gray/white matter boundary.

FreeSurfer Derivatives

A FreeSurfer subjects directory is created in <output dir>/freesurfer.

freesurfer/
fsaverage/

mri/
surf/
...

sub-<subject_label>/
mri/
surf/
...

...

A copy of the fsaverage subject distributed with the running version of FreeSurfer is copied into this subjects
directory.

6.4. Workflows 23

https://surfer.nmr.mgh.harvard.edu/fswiki/SubmillimeterRecon


fMRIprep Documentation, Release version

Contributing to FMRIPREP

This document explains how to prepare a new development environment and update an existing environment, as
necessary.

Development in Docker is encouraged, for the sake of consistency and portability. By default, work should be built
off of poldracklab/fmriprep:latest (see the installation guide for the basic procedure for running).

It will be assumed the developer has a working repository in $HOME/projects/fmriprep, and examples are also
given for niworkflows and NIPYPE.

Patching working repositories

In order to test new code without rebuilding the Docker image, it is possible to mount working repositories as source
directories within the container. In the docker container, the following Python sources are kept in /root/src:

/root/src
- fmriprep/
- nipype/
- niworkflows/

To patch in working repositories, for instance contained in $HOME/projects/, add the following arguments to
your docker command:

-v $HOME/projects/fmriprep:/root/src/fmriprep:ro
-v $HOME/projects/niworkflows:/root/src/niworkflows:ro
-v $HOME/projects/nipype:/root/src/nipype:ro

For example,

$ docker run --rm -v $HOME/fullds005:/data:ro -v $HOME/dockerout:/out \
-v $HOME/projects/fmriprep:/root/src/fmriprep:ro \
poldracklab/fmriprep:latest /data /out/out participant \
-w /out/work/ -t ds005

In order to work directly in the container, use --entrypoint=bash, and omit the fmriprep arguments:

$ docker run --rm -v $HOME/fullds005:/data:ro -v $HOME/dockerout:/out \
-v $HOME/projects/fmriprep:/root/src/fmriprep:ro --entrypoint=bash \
poldracklab/fmriprep:latest

Preparing repository for patching

In order to patch a working repository into the docker image, its egg-info must be built. The first time this is done,
the repository should be mounted read/write, and be installed in editable mode. For instance, to prepare to patch in
fmriprep, niworkflows and nipype, all located under $HOME/projects,

$ docker run --rm -it --entrypoint=bash \
-v $HOME/projects/fmriprep:/root/src/fmriprep \
-v $HOME/projects/niworkflows:/root/src/niworkflows \
-v $HOME/projects/nipype:/root/src/nipype \
poldracklab/fmriprep:latest

root@03e5df018c5e:~# cd ~/src/fmriprep/
root@03e5df018c5e:~/src/fmriprep# pip install -e .
root@03e5df018c5e:~# cd ~/src/niworkflows/

24 Chapter 6. Contents

https://hub.docker.com/r/poldracklab/fmriprep/
https://github.com/poldracklab/niworkflows
https://github.com/nipy/nipype


fMRIprep Documentation, Release version

root@03e5df018c5e:~/src/niworkflows# pip install -e .
root@03e5df018c5e:~# cd ~/src/nipype/
root@03e5df018c5e:~/src/nipype# pip install -e .

Adding dependencies

New dependencies to be inserted into the Docker image will either be Python or non-Python dependencies. Python
dependencies may be added in three places, depending on whether the package is large or non-release versions are
required. The image must be rebuilt after any dependency changes.

Python dependencies should generally be included in the REQUIRES list in fmriprep/info.py. If the latest version in
PyPI is sufficient, then no further action is required.

For large Python dependencies where there will be a benefit to pre-compiled binaries, conda packages may also be
added to the conda install line in the Dockerfile.

Finally, if a specific version of a repository needs to be pinned, edit the requirements.txt file. See the current
file for examples.

Non-Python dependencies must also be installed in the Dockerfile, via a RUN command. For example, installing an
apt package may be done as follows:

RUN apt-get update && \
apt-get install -y <PACKAGE>

Rebuilding Docker image

If it is necessary to rebuild the Docker image, a local image named fmriprep may be built from within the working
fmriprep repository, located in ~/projects/fmriprep:

~/projects/fmriprep$ docker build -t fmriprep .

To work in this image, replace poldracklab/fmriprep:latest with fmriprep in any of the above com-
mands.

6.5. Contributing to FMRIPREP 25

https://github.com/poldracklab/fmriprep/blob/29133e5e9f92aae4b23dd897f9733885a60be311/fmriprep/info.py#L46-L61
https://pypi.org/
https://github.com/conda/conda
https://github.com/poldracklab/fmriprep/blob/29133e5e9f92aae4b23dd897f9733885a60be311/Dockerfile#L46
https://github.com/poldracklab/fmriprep/blob/master/requirements.txt

	About
	Principles
	Acknowledgements
	License information
	Authors
	Contents
	Installation
	What's new
	Usage
	Workflows
	Contributing to FMRIPREP


